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Abstract
Understanding how species respond to the environment is essential in ecology, evo-
lution,	 and	 conservation.	 Abiotic	 factors	 can	 influence	 species	 responses	 and	 the	
multi- dimensional space of abiotic factors that allows a species to grow represents 
the environmental niche. While niches are often assumed to be constant and robust, 
they are most likely changing over time and estimation can be influenced by popu-
lation biology, sampling intensity, and computation methodology. Here, we used a 
12-	year	time	series	of	survey	data	to	fit	annual	ecological	niche	models	 (ENMs)	for	
10 marine fish species by using two regression and two machine learning algorithms 
to	evaluate	 the	variation	and	differentiation	of	environmental	niches.	Fitted	ENMs	
were used to develop multi- dimensional annual and pooled hypervolumes that were 
evaluated	 over	 time	 and	 across	 ENM	algorithms,	 species,	 and	 years	 by	 computing	
volume, distance, and dissimilarity metrics for each annual estimated niche. We then 
investigated potential drivers of estimated hypervolume dynamics including species 
abundance, species occurrence, sampling effort, salinity, red tides severity, and algo-
rithm. Overall, our results revealed that estimated niches varied over time and across 
ENM,	species,	and	algorithms.	Niche	estimation	was	influenced	over	time	by	multiple	
factors suggesting high complexity on niche dynamics interpretation. Species with 
high occurrence tended to have a closer representation of the pooled niche and years 
with	higher	abundance	tended	to	produce	niche	expansion.	ENM	algorithm,	sampling	
effort, seawater salinity, and red tides explained the deviations from the pooled niche. 
Greater sampling effort led to more comprehensive and complete estimates of spe-
cies niches. High red tides severity triggered niche contraction. Our results emphasize 
the predictable effects of population, sampling, and environment on species niche es-
timation and interpretation, and that each should be considered when performing and 
interpreting ecological niche analyses. Our niche analysis approach may contribute to 
effectively	quantifying	and	assessing	niche	dynamics.
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1  |  INTRODUC TION

The spatiotemporal distributions of species are key aspects for ad-
dressing issues related to ecology, evolution, and conservation (Elith 
& Leathwick, 2009).	At	large	spatiotemporal	scales,	species	are	dis-
tributed over space and time because of the influence of abiotic or 
environmental factors that affect physiology, phenology, behavior, 
and geographic ranges. Changes in environmental factors, such as an 
increase in seawater temperature, may cause shifts in marine species 
distributions, thus affecting the structure and functioning of marine 
ecosystems (Pinsky et al., 2020),	as	well	as	the	ecosystem	services	
they provide (Plagányi, 2019).	Therefore,	evaluating	changes	in	en-
vironmental niche space over time is essential for the conservation 
and management of species and ecosystems.

Ecological niche theory emphasizes that species use specific 
resources, habitats, and environments, and their distributions are 
often based on non- linear relationships with respect to abiotic fac-
tors (Hutchinson, 1957).	To	describe	the	ecological	niche	of	a	spe-
cies, Hutchinson (1957)	 proposed	 the	 n-	dimensional	 hypervolume	
defined as a multi- dimensional space of abiotic factors, also known 
as environmental space, that corresponds to an environmental state 
that would allow a species to grow and reproduce. The niche conser-
vationism hypothesis states that species and taxonomic groups tend 
to retain their niches and related ecological traits over space and 
time (Peterson, 2011; Wiens & Graham, 2005).	 In	practice,	 recent	
developments	 in	 niche	 quantification	 tools	 can	 help	 to	 better	 un-
derstand the interpretation and estimation of ecological niches over 
time	(Blonder	et	al.,	2017).

Niche	 estimation	 could	 vary	 over	 time	 depending	 on	 intrinsic	
population, environmental, sampling, or temporal scale factors. 
Population size and competition or predation variation may cause 
species range contraction or expansion that could alter the estimated 
ecological niche (Jankowski et al., 2013; von Takach et al., 2020).	
Environmental	 perturbations	 can	 decrease	 habitat	 quality,	 and	
cause individuals to move away from impacted areas and therefore 
temporally affect ecological niche estimation (Fredston et al., 2021; 
Gannon et al., 2009).	Factors	 related	to	the	sampling	process	may	
also	influence	ecological	niche	interpretation	(Boria	et	al.,	2014).	For	
instance, the extent of the study area can be crucial for species distri-
butions	and	ecological	niche	modeling	(Barve	et	al.,	2011).	At	larger	
temporal scales, ecological niche estimation can be impacted by 
non- stationarity in species' environmental relationships (Kingsbury 
et al., 2020).	 This	 process	 is	 also	 known	 as	 niche	 adaptation	 and	
may	 result	 in	 a	 niche	 expansion.	 Besides	 temporal	 changes,	 niche	
estimation can be affected by the algorithm that is applied to pre-
dict species occurrence. Several studies evaluated the differences 
among	ecological	niche	model	(ENM)	formulation,	parametrization,	
and	algorithm	predictions	(Bucklin	et	al.,	2015; Citores et al., 2020; 
Norberg	et	al.,	2019),	although	the	effect	of	ENM	algorithm	transfer-
ability, selection, and parametrization of hypervolume niche estima-
tion remains poorly known.

Species niche variations over time call for developing and im-
plementing	 methods	 that	 quantify	 and	 evaluate	 temporal	 niche	

fluctuations. Temporal niche changes may be estimated by using 
diel activity patterns (e.g., Watabe et al., 2022),	 diet	 information	
(e.g., Grüss et al., 2020),	or	abundance,	biomass,	or	occurrence	 in-
formation (e.g., von Takach et al., 2020).	Multiple	tools	and	analyses	
have	been	used	 to	quantify	 temporal	niche	differentiation,	 for	ex-
ample, niche breadth (e.g., White et al., 2015),	Principal	Component	
Analysis	(e.g.,	Broennimann	et	al.,	2012),	species	distribution	overlap	
(e.g.,	Banerjee	et	al.,	2019),	and	niche	hypervolume	 (e.g.,	Carvalho	
& Cardoso, 2020).	 Among	 these	methods,	multidimensional	 niche	
estimation represents a novel and powerful tool to analyze and fully 
explore niche dynamics over time.

Multiple	 approaches	 for	 estimating	 species’	 ecological	 niches	
have since been developed (Sexton et al., 2017).	 For	 example,	
association-	based	 techniques,	 like	 the	n-	dimensional	 hypervolume	
framework, measure niche breadth through multivariate statistical 
assessments of species occurrences related to specific abiotic fac-
tors	(e.g.,	Blonder	et	al.,	2014).	The	hypervolume	approach	quanti-
fies the environmental niche or space that is occupied by a species 
and	 represented	by	 the	major	 traits	 and/or	 environmental	 factors	
affecting	a	species	 (Blonder	et	al.,	2014, 2017).	The	n-	dimensional	
hypervolume approach provides simple means for comparing niche 
hypervolumes, and is a powerful tool to assess differences and sim-
ilarities	 among	 ecological	 niches	 (Mammola,	2019).	Hypervolumes	
have	been	successfully	applied	to	quantify,	compare	and	represent	
realized niches of multiple species and communities and to address 
ecological, evolutionary, palaeoecological, conservation, and cli-
mate	change	questions	 (Blonder	et	al.,	2017).	For	 instance,	 loss	of	
ecological trait diversity was predicted for terrestrial mammals and 
birds by investigating hypervolumes under future climatic scenarios 
(Cooke et al., 2019).	Additionally,	the	hypervolume	approach	can	be	
used	to	calculate	environmental	niches	by	using	ENMs	and/or	spe-
cies	distribution	models	(SDMs;	Blonder	et	al.,	2014; Drake, 2015).	
Here,	we	used	ENM	and	SDM	terms	interchangeably	because	these	
terms are closely related (but see Peterson & Soberón, 2012).	Some	
ENM	 algorithms	 have	 been	 developed	 beyond	 the	 hypervolume	
concept by including more complexity and biotic and other factors 
(e.g., Thorson, 2019).	 Nonetheless,	 hypervolume	 approaches	 can	
provide	 insights	 into	 the	 assumptions	 and	behavior	of	many	ENM	
tools	(Blonder	et	al.,	2017).

We addressed the problem of estimating environmental niche 
hypervolumes over time using a large- scale marine fish monitoring 
program spanning a 12- year period. First, we asked whether the es-
timation of niche hypervolumes varied over time. To do so, we fitted 
pooled	 (12 years	of	data	combined)	and	year-	specific	ENMs	for	10	
dominant fish taxa across the West Florida Shelf using four model-
ing algorithms. For each algorithm, we estimated hypervolumes and 
how components of annual hypervolumes that changed over time 
related	to	the	12-	year	pooled	hypervolume	to	quantify	 the	extent	
of temporal dynamics in estimated hypervolumes. Second, we asked 
what factors may explain variation in hypervolumes over time, fo-
cusing on variation in sampling, modeling algorithm used, intrinsic 
factors that may influence density- dependent habitat selection, and 
temporal changes in environmental factors that may alter species 
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responses. Sampling and model algorithms focus on the sensitiv-
ity of study design and analysis to affect hypervolume estimation, 
whereas intrinsic factors and environmental factors focus on how 
hypothesized processes may expand or constrict the expected 
hypervolume of a species. This approach may help to determine 
temporal shifts of niche hypervolumes, explore potential factors 
affecting the niche temporal interpretation, and find the most ap-
propriate	ENM	algorithm	to	capture	the	responsiveness	of	species	
to environmental variation or niche plasticity (Gabriel et al., 2005).	
The novel framework we present here may help to analyze niche 
dynamics over time and so disentangle the effects of factors affect-
ing the ecological niche interpretation and estimation over time that 
could be relevant for management and conservation purposes and 
improve spatiotemporal ecosystem modeling by accounting for such 
variability.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The	West	Florida	Shelf	(WFS)	is	located	in	the	eastern	region	of	the	
Gulf	of	Mexico	and	extends	from	the	west	coast	of	Florida	to	about	
87.5W longitude. The WFS is a broad shelf and covers approximately 
170,000 km2,	 with	 a	 depth	 range	 between	 0	 and	 200 m	 (Okey	 &	
Mahmoudi,	2002; Figure 1).	In	this	region,	sea	surface	temperature	

fluctuates seasonally between 17°C in winter and 30°C in sum-
mer (Liu & Weisberg, 2012),	 while	 salinity	 varies	 between	 5	 and	
35 parts per thousand, with salinity patterns mainly driven by river 
outflows. The WFS exhibits high species richness relative to other 
Gulf	of	Mexico	regions	(Harte	Research	Institute	for	Gulf	of	Mexico	
Studies, 2016;	Murawski	et	al.,	2018),	fosters	a	diversity	of	benthic	
habitat types, including natural reefs (Darnell, 2015),	and	supports	
valuable recreational and commercial fisheries (Florida Fish and 
Wildlife Conservation Commission, 2020a;	NOAA,	2020).	However,	
the WFS region has been impacted by multiple stressors during the 
last decade: overexploitation, invasive species, red tides, hypoxic 
events,	and	oils	spill	have	caused	major	impacts	at	ecological	levels	
affecting species, ecosystems, and services (Chagaris et al., 2020; 
Driggers et al., 2016;	Murawski	et	al.,	2016).

2.2  |  Presence– absence data

Presence and absence records were extracted from the Southeast 
Area	Monitoring	 and	Assessment	 Program	 (SEAMAP;	https://www.
gsmfc.org/seamap.php; Rester, 2017)	 bottom	 trawl	 dataset,	 which	
is a fishery- independent survey program operating during summer 
and	fall	in	the	Gulf	of	Mexico	since	1981	and	on	the	WFS	since	2008	
(Figure S1).	During	each	summer	or	fall	survey,	stations	were	randomly	
distributed each year on the continental shelf (depth range between 10 
and	200 m)	and	for	each	station,	a	30-	minute	tow	was	conducted	with	

F I G U R E  1 Location	of	the	West	
Florida shelf study region.
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a 40- ft trawl towed at a speed of 2.5 knots (Figure S2).	At	each	station,	
all marine organisms were identified, and abundance and biomass were 
calculated	for	each	species.	The	SEAMAP	trawl	survey	used	a	bottom	
trawl that mainly targets demersal and benthic species.

We	filtered	the	trawl	dataset	 for	WFS	stations	 (all	since	2009)	
using latitude and longitude. Then, we selected the 10 most common 
demersal species in terms of numeric abundance with at least 20 
presence points in each year to avoid unreliable predictions since 
sample size can dictate the ability to capture the environmental 
responses (Elith & Franklin, 2013; Wood, 2017).	 The	 10	 selected	
demersal species included: Scrawled cowfish (Acanthostracion 
quadricornis),	 Twospot	 flounder	 (Bothus robinsi),	 Littlehead	 porgy	
(Calamus proridens),	 Sand	 perch	 (Diplectrum formosum),	 Tomtate	
grunt (Haemulon aurolineatum),	 Pinfish	 (Lagodon rhomboides),	 Lane	
snapper (Lutjanus synagris),	Bluespotted	searobin	(Prionotus roseus),	
Inshore lizardfish (Synodus foetens),	and	Snakefish	(Trachinocephalus 
myops; Table 1).	These	species	capture	a	broad	range	of	taxa	and	life-	
history strategies and represent the bulk of demersal fish biomass 
on the WFS dataset (>40%	of	total	fish	biomass).

2.3  |  Environmental data

We	used	in	situ	environmental	data	to	fit	ENMs	and	annual	environ-
mental raster data to build hypervolumes for comparison purposes. 
Most	stations	in	the	SEAMAP	dataset	incorporated	in	situ	sea	surface	
temperature	(SST),	sea	surface	salinity	(SSS),	and	depth	measurements	
made	with	conductivity,	temperature,	and	depth	(CTD)	sensors.	To	cal-
culate annual environmental data, environmental monthly raster data 
were	extracted	from	the	Hybrid	Coordinate	Ocean	Model	(HYCOM;	
Chassignet et al., 2007)	except	for	depth	(NOAA	National	Geophysical	
Data Center, 2001).	SST	and	SSS	monthly	raster	data	were	averaged	
for each year to compute annual raster data. The spatial resolution of 
raster	data	was	0.041 × 0.041	degrees	(~5	km).	We	used	environmen-
tal raster data for prediction instead of in situ environmental data to 
ensure that all stations included environmental data. Environmental 
raster data were scaled by Z- transformation.

2.4  |  Ecological niche models

Species presence– absence was used to fit binomial ecological niche 
models. Depth, SST, and SSS were considered as potential explana-
tory variables because of their known influence on the distribution 
of	the	marine	community	(Melo-	Merino	et	al.,	2020).	We	calibrated	
annual	ENMs	and	a	12-	year	ENM	(pooled	ENM)	for	each	species	in	
order	to	evaluate	how	ENMs	varied	over	time	compared	to	the	long-	
term	(12-	year)	average	ENM.	Modeling	each	year	separately	allowed	
to more clearly interpret temporal variation on the environmental 
niche.	For	each	species,	we	fitted	annual	ENMs	by	applying	two	re-
gression algorithms (generalized linear models and generalized ad-
ditive	models)	and	two	machine	learning	algorithms	(random	forest	
and	boosted	regression	trees).	Generalized	linear	models	(GLMs)	are	

linear regression models that are based on an assumed relationship 
using a link function between the response variable and the linear 
combination	of	the	explanatory	variables	(Dobson	&	Barnett,	2018).	
GLMs	 can	 predict	 non-	linear	 response	 functions	 by	 adding	 quad-
ratic	 or	 polynomic	 terms.	 GLMs	 were	 implemented	 with	 the	 glm 
function in [R] (R Core Team, 2017).	 Generalized	 additive	models	
(GAMs)	are	also	regression	models	based	on	relationships	between	
response and explanatory variables in which smooth functions are 
additive and provide a flexible method for identifying nonlinear co-
variate effects (Wood, 2017).	GAMs	were	 fitted	 using	 the	 “mgcv” 
package (Wood & Wood, 2015)	implemented	in	[R].	Random	forest	
(RF)	models	build	decision	trees	using	different	bootstrap	samples	
of data that predict nonlinear response functions. Decision trees are 
selected	by	the	bagging	method	that	each	occurrence	has	an	equal	
probability	of	being	selected	in	subsequent	subsamples.	Each	node	
is split using the best among a subset of predictors randomly cho-
sen	at	that	node	(Breiman,	2001).	RF	models	were	fitted	using	the	
“randomForest” package (Liaw & Wiener, 2002)	implemented	in	[R].	
Boosted	 regression	 trees	 (BRT)	 models	 combine	 regression	 trees	
with	boosting	algorithms.	Similar	 to	RF,	BRT	models	 repeatedly	 fit	
many	decision	trees	to	improve	the	accuracy	of	the	model,	but	BRT	
uses a boosting method for building decision trees in which occur-
rence	data	are	weighted	in	subsequent	trees	(Elith	et	al.,	2008).	BRT	
models	were	fitted	using	the	“gbm” package (Ridgeway, 2007)	imple-
mented in [R].

Selected algorithms were utilized because of their importance 
in predicting response functions and describing environment 
niches (Elith & Leathwick, 2009).	 Each	 algorithm	 has	 some	 ad-
vantages, assumptions, and limitations and may provide different 
environmental	responses	(e.g.,	Norberg	et	al.,	2019).	Thus,	model	
selection was not included in the calibration process. For com-
parison	 purposes,	 ENMs	were	 built	 in	 the	most	 consistent,	 par-
simonious, and least complex structure possible as we aimed to 
reproduce	similar	and	flexible	response	functions.	All	ENMs	were	
fitted	by	using	binomial	 information	(presence–	absence)	and	for-
mulated	 to	 capture	 nonlinear	 responses.	 For	GLMs,	we	 added	 a	
quadratic	term	to	each	explanatory	variable	so	response	functions	
can	 reproduce	 unimodal	 response	 functions.	 For	 GAMs,	we	 im-
plemented the generalized cross- validation method to estimate 
smoothing	parameters.	Additionally,	we	restricted	the	degrees	of	
freedom of smooth functions for each explanatory variable (k =	4)	
to avoid oversmoothing and specified a gamma parameter of 1.4 
to avoid overfitting (Wood, 2017).	 RFs	 and	 BRTs	 automatically	
fit nonlinear response functions through regression trees (Elith 
et al., 2008),	 three	variables	were	chosen	at	each	node,	and	 the	
number of trees was set to as default values (500 and 100 trees, 
respectively)	 following	 previous	 studies	 (e.g.,	 Aguirre-	Gutiérrez	
et al., 2013).

To	 evaluate	 fitted	 ENMs,	 we	 used	 an	 approach	 adopted	 in	
previous marine species distribution modeling studies (e.g., Grüss 
et al., 2014, 2021).	 For	 each	 dataset,	we	 used	 bootstrapping	 by	
resampling with replacement (n =	 1000	 bootstrap	 datasets)	 to	
evaluate models. We used this bootstrap method rather than a 
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cross-	validation	 (leave-	one-	out)	 method	 because	 of	 the	 limited	
number	of	samples.	Then,	we	evaluated	ENMs	by	computing	the	
area	under	 the	curve	 (AUC),	 the	true	skill	 statistic	 (TSS),	and	the	
root-	mean	 squared	 error	 (RMSE).	 AUC	 values,	 which	 were	 ob-
tained by using the ‘ROCR’	 [R]	 package	 (Sing	 et	 al.,	2005),	 range	
from 0 to 1, with 0.5 being as good as random and values close to 
1	indicative	of	perfect	prediction	(Fielding	&	Bell,	1997).	The	TSS	
index	ranges	from	−1	to	+1, where +1 indicates perfect agreement 
and values of zero or less indicate a performance no better than 
random	(Allouche	et	al.,	2006).	The	RMSE	measured	the	average	
prediction	error	and	so	the	lower	the	RMSE,	the	better	the	model	
performance.

2.5  |  Hypervolumes

After	ENM	calibration	for	each	species,	models	were	used	to	calcu-
late	annual	 three-	dimensional	 (depth,	SST,	and	SSS)	hypervolumes	
for	 each	 species.	 A	 complete	 flowchart	 of	 annual	 hypervolume	
constructions was represented to visualize the analytical process 
(Figure S1).	The	n-	dimensional	hypervolume	framework	was	imple-
mented to compute and analyze annual multidimensional hyper-
volumes	 for	 each	 species	 by	 using	 the	 “hypervolume” [R] package 
(version	3.04)	(Blonder	et	al.,	2014, 2018).	Niche	hypervolumes	are	
defined by the bounds of scaled and centered environmental fac-
tors	 (Blonder	 et	 al.,	 2018).	 Specifically,	 three-	dimensional	 hyper-
volumes of species were generated for each year by sampling from 
fitted	ENMs.	We	used	the	function	hypervolume_general_model() to 
generate	hypervolume	statistics	from	an	ENM	model	directly.	This	
approach	 uses	 rejection	 sampling	 to	 obtain	 predicted	 values	 of	 a	
model	object	at	uniformly	 random	points	within	a	 range	box	 from	
data, then converts the output to a hypervolume and facilitates the 
interpretation	of	ENM	outputs	as	hypervolume	functions	 (Blonder	
et al., 2017).

To evaluate whether the estimation of niche hypervolumes var-
ied over time, we computed distance, volume, and dissimilarity met-
rics between each annual hypervolume to the pooled hypervolume 
for	each	species	(Mammola,	2019; Figure 2a).	Such	metrics	represent	
a proxy of niche overlap and high niche overlap is expected when 
the hypervolume comparison obtained low distance, low volume 
change, low inverse intersection, and low dissimilarity. To evaluate 
the distance between hypervolumes, we obtained the centroid dis-
tance and the minimum distance. The centroid distance is defined as 
the Euclidean distance between the centroids of two hypervolumes 
(Figure 2b).	The	minimum	distance	represents	the	pairwise	minimum	
Euclidean distance between two sets of random points comprising 
two hypervolumes (Figure 2c).	To	estimate	 the	shared	volume	be-
tween hypervolumes, we used four metrics: the volume change, the 
inverse intersection, the Sørensen- Dice dissimilarity index, and the 
Jaccard dissimilarity index. The inverse intersection of two hyper-
volumes is calculated as the inverse of the fraction of points falling 
within the boundaries of both hypervolumes (Figure 2d).	The	volume	
change was computed as the absolute volume difference between 
the pooled and the annual hypervolume (Figure 2e).	Both	Sørensen-	
Dice and Jaccard dissimilarity indices represent the overlap level 
between two hypervolumes and their values range from 0 (fully 
overlapped)	to	1	(fully	disjunct)	(Figure 2f,g).	Low	dissimilarity	values	
indicate a high overlap between the annual estimated niche and the 
pooled niche.

2.6  |  Linear mixed- effects models

To explore factors affecting the temporal variation in niche hypervol-
ume	estimates,	we	fitted	linear	mixed-	effects	models	(LMMs;	Zuur	
et al., 2009)	by	using	the	“nlme” [R] package (Pinheiro et al., 2017; 
version	3.1-	157).	We	selected	centroid	distance,	volume	change,	and	
the Sørensen- Dice similarity index as response terms because of 

TA B L E  1 Annual	species	occurrence	of	the	10	demersal	fish	species	selected	among	SEAMAP	trawl	samples	to	estimate	environmental	
niche hypervolumes.

Species
2009 
(241)

2010 
(243)

2011 
(151)

2012 
(237)

2013 
(209)

2014 
(297)

2015 
(261)

2016 
(215)

2017 
(257)

2018 
(260)

2019 
(237)

2020 
(90)

Diplectrum formosum 199 167 113 188 167 240 215 184 227 215 208 71

Synodus foetens 192 187 110 165 148 216 156 154 199 199 187 63

Acanthostracion 
quadricornis

157 102 78 102 130 182 128 121 159 161 147 56

Haemulon aurolineatum 163 137 88 163 105 158 139 100 148 135 125 41

Trachinocephaus myops 125 126 66 92 120 144 119 108 167 154 148 65

Lutjanus synagris 108 82 55 109 90 138 112 89 114 123 97 49

Bothus robinsi 96 85 50 66 83 115 103 102 129 118 118 54

Calamus proridens 106 115 53 114 82 125 111 80 105 97 83 43

Prionotus roseus 91 80 46 71 73 97 97 87 96 111 109 50

Lagodon rhomboides 110 68 59 107 67 103 72 41 89 78 78 37

Note:	Numbers	in	parentheses	represent	the	number	of	samples	for	each	year,	while	numbers	in	the	table	indicate	the	number	of	samples	a	given	
species was observed in the trawl catch.
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6 of 14  |     VILAS et al.

their variable trend over time and species as a random intercept. For 
each niche hypervolume metric, we calibrated and evaluated one 
null	model	 (including	only	 random	effects)	 and	 seven	models	 that	

differed in the inclusion of fixed effects that may affect the estima-
tion	of	niches.	LMMs	 included	a	 temporal	autocorrelation	 term	 to	
statistically consider independence on time series estimates.

F I G U R E  2 Representation	of	pooled	and	annual	hypervolumes	into	a	two-	dimensional	space	defined	by	two	environmental	factors	and	
six	metrics	used	to	compare	hypervolumes	(adapted	from	Mammola,	2019).	(a)	Each	hypervolume	represents	the	environmental	niche	of	a	
species. Hypervolume contour lines identify and bound environmental niches edges. Stochastic colored points represent the random points 
that are generated to construct the hypervolumes. Centroids identify the center of the hypervolume. Hypervolumes can be compared using 
six	metrics	(b)	centroid	distance,	(c)	minimum	distance,	(d)	inverse	intersection,	(e)	volume	change,	(f)	Sørensen-	dice	dissimilarity	index,	and	
(g)	Jaccard	dissimilarity	index.
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    |  7 of 14VILAS et al.

As	 fixed	 effects,	 we	 separately	 investigated	 multiple	 factors:	
two factors representing intrinsic population aspects (annual mean 
abundance [average caught individuals per year] and occurrence 
[percentage	of	stations	with	at	least	one	individual	caught]),	one	fac-
tor related to sampling effort (effort [n	samples]),	three	environmen-
tal	factors	(SST,	SSS,	and	red	tides	severity),	and	the	ENM	algorithm.	
We computed the annual average of temperature and salinity time 
series	from	HYCOM	data,	while	the	red	tides	time	series	was	calcu-
lated by using Karenia brevis cells concentration data collected by the 
Florida Fish and Wildlife Conservation Commission (FWC; 2020b).	
Since	LMMs	differed	in	their	fixed	effects	structure,	we	calculated	
the likelihood- ratio test (LRT; Harrison et al., 2018)	by	using	the	“lm-
test” [R] package (Hothorn et al., 2015)	to	compare	LMMs.	The	LRT	
evaluates the goodness of fit between two models and was used 
to assess if the inclusion of a fixed effect significantly improves the 
model fit with respect to the null model. If significant, the variance 
on the annual niche estimation could be partially explained by each 
of	 the	 considered	 factors	 (ANOVA,	p-	value).	 For	 each	model	 con-
taining fixed effects, we also calculated the marginal R2 that rep-
resents the proportion of variance explained by the fixed effects and 
the ratio of variance explained by the fixed effects over the total 
explained	variance	(Nakagawa	&	Schielzeth,	2013).	The	marginal	R2 
comparison helped to elucidate the most important factors affecting 
temporal niche interpretation.

3  |  RESULTS

Overall, model evaluation results indicated acceptable performance 
of	ENMs.	Most	ENMs	(80%,	416	ENMs	out	of	520)	obtained	an	AUC	
value	higher	than	0.7,	a	TSS	value	higher	than	0.4,	and	a	RMSE	value	
lower than 0.5 (Table S1).	The	levels	with	the	highest	proportion	of	
inaccurate	ENMs	(AUC < 0.7,	TSS < 0.4,	and	RMSE > 0.5)	were	RF	for	
the model algorithm.

Species niche results varied among metrics, species, and algo-
rithms (Figure 3; Figure S3).	 Species	 and	 algorithm	 differences	 in	
niche estimations were noticeable for centroid distance, volume 
change, and dissimilarity metrics (Figure 3).	Most	annual	niche	esti-
mates of species were highly dispersed because of the variation over 
time in these metrics. Regarding species, Diplectrum formosum and 
Synodus foetens obtained low centroid distance, inverse intersec-
tion, and dissimilarity indicating that low variability in the estimated 
niche space over time, while other species such as Lutjanus synagris 
showed high values for these metrics (Figure 3).	 Low	distance,	 in-
verse intersection and dissimilarity estimates were found for some 
common	 species	 (high	 occurrence)	 such	 as	 Diplectrum formosum 
(Table 1).	 In	 terms	of	 ENM	algorithms,	 the	GAM	obtained	 slightly	
higher	 centroid	 distance,	 while	 the	 GLM	 showed	 higher	 volume	
change.	The	GAM	and	RF	obtained	the	highest	dissimilarity	hyper-
volume estimates (Figure 3).

F I G U R E  3 Metric	estimates	from	hypervolume	comparison	(annual–	pooled)	across	ecological	niche	modeling	(ENM)	algorithm	and	
species.	Colors	represent	ENM	algorithms:	Generalized	Linear	Model	(GLM),	Generalized	Additive	Model	(GAM),	Random	Forest	(RF),	and	
Boosted	Regression	Trees	(BRT).	Boxplots	indicate	the	distribution	over	all	annual	hypervolume	values	(median,	the	10th	and	the	90th	
percentiles)	for	each	species	and	algorithm	group.	Species	are	sorted	from	most	to	least	common.
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8 of 14  |     VILAS et al.

Estimated niche dynamics also showed high dispersion, fluctua-
tions, and differences among algorithms, species, and metrics over 
time (Figure 4; Figure S3).	Consistent	changes	on	hypervolume	trends	
over time were captured with centroid distance, volume change, and 
dissimilarity metrics. Estimated niche dynamics displayed highly dis-
persed values due to variance among species, especially for the cen-
troid	distance	and	GAM	and	BRT	(Figure 4).	Centroid	distance,	volume	
change, and dissimilarity metrics fluctuate synchronically and similarly 
over time. In 2009, 2010, 2013, and 2020, niche estimation obtained 
high distance, volume change, and dissimilarity indicating low similar-
ity to the pooled niche, while low distance, volume change, and dissim-
ilarity were found in 2012, 2015, 2017, and 2019 (Figure 4).

LMMs	 results	 showed	 that	 several	 factors	 may	 drive	 annual	
niche estimation (Figure 5; Table S2).	Volume	change	obtained	the	
highest variance explained by fixed effects followed by dissimilar-
ity (Figure 5).	The	most	important	factors	affecting	niche	temporal	
estimation	were	ENM	algorithm,	occurrence,	sampling	effort,	SSS,	
and red tides (Table S2).	Niche	distance	dynamics	were	driven	pos-
itively	by	ENM	and	red	tides	and	negatively	by	sampling	effort,	and	
SSS.	Thus,	ENM	algorithm	influenced	the	niche	distance	dynamics	
and high levels of red tides and low of sampling effort, and SSS pro-
duced	high	niche	distance.	ENM	algorithm,	occurrence,	red	tides,	
sampling effort, SST, and SSS significantly affected the estimation 
of	annual	species	niche	volumes	and	ENM	algorithm	explained	the	
highest levels of variance which indicates that volume change was 
primarily	driven	by	 the	ENM	algorithm	choice.	Species	niche	dis-
similarity was driven negatively by occurrence, sampling effort, 
SST,	and	SSS	and	positively	by	ENM	algorithm	and	red	tides,	which	
indicates	that	dissimilarity	niche	were	affected	by	ENM	algorithm	
and high niche dissimilarity estimates were expected under low oc-
currence, sampling effort and SSS and high levels of red tides.

4  |  DISCUSSION

Niche	quantification	 is	 increasingly	 applied	 in	 evolution,	 conser-
vation, and ecology (e.g., James et al., 2020; Lesser et al., 2020; 
White et al., 2021).	Previous	studies	demonstrated	that	estimated	
niches may contract, expand, or shift over time due to popula-
tion or environmental factors (e.g., Carvalho & Cardoso, 2020; 
Chapman et al., 2017; Ern et al., 2017).	Our	results	illustrated	that	
ENM	algorithm,	environment,	sampling	effort,	and	species	preva-
lence may affect the species niche interpretation. This study also 
demonstrated the capabilities of this methodology to analyze 
niche dynamics over time. Therefore, such temporal niche ap-
proach may be relevant for conservation, management, and spe-
cies distribution modeling.

4.1  |  The dynamics of niche hypervolumes

Our	 results	 indicated	 that	 ENM	 predictions	 were	 accurate	 and	
temporal niche interpretations were robust. Species displayed 

differences in terms of mean metric estimates and interannual 
variability. Interspecific niche distinction is primarily driven by 
their contrasting preferences for particular resources, habi-
tats, and environments (Sexton et al., 2017).	The	species	 results	
showed that some common species like Diplectrum formosum 
obtained lower mean levels of distance, and dissimilarity among 
years and so high niche overlap between annual and pooled. 
These results supported that niche estimation may be affected 
by population processes such as range contraction or expansion. 
Species traits and information, for example, species prevalence, 
can provide conclusions on conservation status, risk assessment, 
and gear catchability (Chapman et al., 2018;	Enquist	et	al.,	2019; 
Young	et	al.,	2019).	Species	prevalence	may	also	bias	model	esti-
mates (Sillero et al., 2021).	Common	species	tend	to	remain	con-
sistent over ecological timescales (Gaston, 2011)	 and	 produce	 a	
more statistically reliable relationship with environmental factors 
than	least	common	(Segurado	&	Araujo,	2004)	and	least	common	
species tend to be misspecified (Smith et al., 2019).	On	the	other	
hand, such niche differences across species may be caused by the 
contrasting plasticity and vulnerability of species to changing en-
vironmental conditions (Gabriel et al., 2005; Sexton et al., 2017).

The RF algorithm obtained high dissimilarity hypervolume es-
timates.	 Machine	 learning	 methods	 like	 RF	 demonstrated	 strong	
performance in predicting outcomes (Elith, 2019).	High	dissimilarity	
levels may suggest a poor informative estimated niche, but this may 
help to capture niche fluctuations. These results are in line with the 
low level of accuracy of the hypervolumes fitted using RF. The high 
centroid	distance	and	dissimilarity	 revealed	 for	GAM	and	the	high	
volume	 change	 for	GLM	may	 suggest	 the	 ability	 of	 such	 ENM	al-
gorithm to capture niche fluctuations. This also can indicate more 
relaxed environmental response curves and niche space estimation 
that may be uninformative for conservation purposes by overesti-
mating species niche (Warren et al., 2020),	but	 it	can	represent	an	
advantage	 for	 studies	with	alternative	objectives	 such	as	coupling	
ENMs	with	ecosystem	models	(Coll	et	al.,	2019).	Recent	studies	rec-
ommended	 GAMs	 over	 other	 approaches	 for	 computing	 environ-
mental	response	functions	(Brodie	et	al.,	2020; Püts et al., 2020).	In	
marine	environments,	 correlative	models	 such	as	GAM	have	been	
more	 frequently	 used	 than	 other	 machine	 learning	 approaches.	
However, no single best ecological niche algorithm exists because 
its predictive power depends on the approach's assumptions and the 
particularities of the species (Qiao et al., 2015).

4.2  |  Factors explaining temporal variability in 
hypervolumes

ENM	 algorithm	 was	 identified	 as	 an	 important	 factor	 explaining	
fluctuations in estimated niche distance, volume, and dissimilar-
ity.	 ENM	 algorithm	 should	 be	 considered	 when	 evaluating	 niche	
changes	over	time,	specially	niche	volume	variations,	and	GLM	and	
GAM	may	help	to	better	capture	such	temporal	niche	variations	be-
cause of their ability to differentiate among annual niche estimates 
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    |  9 of 14VILAS et al.

and the pooled niche estimates. We recommend to explore multi-
ple	ENM	algorithms	when	investigating	niche	fluctuations	because	
ENM	algorithms	results	may	differ	depending	on	species	traits	(Qiao	
et al., 2015).	Occurrence	explained	a	proportion	of	variance	of	esti-
mated niche dissimilarity and volume trends. The high occurrence 
was associated with lower estimated niche dissimilarity and volume, 

indicating little interannual variation in hypervolume for commonly 
occurring species. Occurrence and abundance can induce range ex-
pansion or contraction in marine species (Thorson et al., 2016; von 
Takach et al., 2020)	and	thus	alter	the	temporal	niche	interpretation.	
Population size may affect niche distance, position, and volume and 
thus it should be considered when temporally interpreting species 

F I G U R E  4 Time	series	of	metric	estimates	from	hypervolume	comparison	(annual	-		pooled)	across	ecological	niche	modeling	(ENM)	
algorithm.	Colors	represent	ENM	algorithms:	Generalized	Linear	Model	(GLM),	Generalized	Additive	Model	(GAM),	Random	Forest	(RF),	
and	Boosted	Regression	Trees	(BRT).	Boxplots	indicate	distribution	over	all	annual	hypervolume	values	(the	median,	the	10th,	and	the	90th	
percentiles)	for	each	year	and	algorithm	group.	Lines	indicate	mean	time	series	of	species	across	ENM.

F I G U R E  5 Percent	of	total	variance	explained	from	linear	mixed	models	of	each	investigated	factor	for	(a)	centroid	distance,	(b)	volume	
change,	and	(c)	Sørensen-	dice	dissimilarity	index	trends.	Asterisks	and	bold	sections	and	factor	names	identify	significant	factors	(ANOVA,	
p < .05).	Blue	color	represents	positive	effects	and	red	color	represents	negative	effects.
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10 of 14  |     VILAS et al.

niches. The population size effect could be further explored and re-
duced	if	necessary	by	fitting	ENMs	with	abundance	data	instead	of	
presence/absence data.

Sampling effort results showed relevant effects for distance, 
volume, and dissimilarity niche time series and this factor mainly 
explained niche similarity. Its negative effects for dissimilarity, dis-
tance, and volume indicated that the higher the sampling effort, the 
more comprehensive and complete species niches were obtained. 
The	number	of	samples	is	a	key	aspect	of	ENMs	and	may	affect	the	
model performance and accuracy (Hernandez et al., 2006; Siders 
et al., 2020; Stockwell & Peterson, 2002).	 These	 results	 demon-
strated that sample design may affect niche interpretation because 
variation in sampling effort could bias niche estimates.

Our results suggested negative effects of salinity and tempera-
ture on niche distance, volume change, and dissimilarity. The in-
creasing seawater salinity and temperature due to climate change 
may	 affect	 species	 ranges	 (McHenry	 et	 al.,	 2019; Purtlebaugh 
et al., 2020)	 or	 pushing	 species	 to	 occupy	 restricted	 refugia	
(Stralberg et al., 2020)	and	consequently	altering	the	ecosystem	and	
the food web. However, the influence of SSS and SST on niche dy-
namics represents an unexpected finding that may be due to the 
effect of a small number of samples on nearshore estuarine loca-
tions with low salinity levels (Figure S1).	This	uncertainty	could	po-
tentially be reduced by incorporating sampling over a broader range 
of the species' geographic distribution and environmental space. The 
effect of environment on niche over time indicated that niche es-
timation could become more uncertain under a climatic change as 
species	distribution	 is	shifting.	This	might	result	 in	ENMs	and	pre-
dictions about species distributions that are obsolete, and it would 
require	routine	long-	term	monitoring	data	to	account	for	the	effect	
of changing environmental conditions. Uncertainty may be reduced 
by increasing the study area to capture a broad range of species geo-
graphic	 distribution	 and	 so	 environmental	 conditions.	 By	 tracking	
the effect of environmental factors such as SSS on niche estimation, 
the temporal variation on the niche interpretation may provide com-
prehensive information on species niche and its conservation under 
climate	change.	Other	factors	such	as	food	availability,	water	qual-
ity, and top- down predation affect species physiology, distribution, 
fitness,	behavior,	phenology,	and	growth	(Alfonso	et	al.,	2021; Free 
et al., 2019; Pinsky et al., 2013),	and	should	also	be	investigated	to	
interpret species niches.

Similar to SST and SSS, red tides helped to explain variance in 
distance, volume, and dissimilarity. Red tides increased niche dis-
tance, volume, and dissimilarity, so high levels of red tides could 
impact estimated niches and hamper its interpretation. These es-
timated changes may be caused by species range contraction as 
shown with other stressors (Scheele et al., 2017).	 In	 the	 eastern	
Gulf	 of	 Mexico,	 periodic	 red	 tide	 events	 impact	 fish	 populations	
(Sagarese et al., 2021),	communities,	and	ecosystems	(Gray	DiLeone	
&	Ainsworth,	2019)	and	may	cause	emigration	from	impacted	areas	
(Vilas et al., 2021).	 The	WFS	 region	 experienced	 severe	 red	 tide	
events between 2005 and 2020 (Karnauskas et al., 2019; Walter III 

et al., 2015)	which	was	captured	by	the	present	niche	temporal	as-
sessment, for instance, the niche dissimilarity in 2019, and 2020. The 
low proportion of variance explained could be due to the localized 
and often short- lived nature of red tides. Severe red tides typically 
occur close to shore in southwest Florida during the late summer and 
fall,	which	rarely	coincides	with	the	SEAMAP	trawl	samples.	Despite	
this, it is possible that the impacts of a red tide bloom span beyond 
the immediate area and could persist longer than the bloom itself 
as hypoxic conditions often develop. Understanding how episodic, 
spatially restricted stressors impact niche interpretation is essential 
in	regions	affected	by	multiple	stressors	such	as	the	Gulf	of	Mexico	
and may be further explored to investigate species vulnerability and 
plasticity.

4.3  |  Limitations and uncertainties

We demonstrated that the hypervolume approach is a powerful 
tool to evaluate niche interpretation. Environmental and biological 
information	 play	 important	 roles	 in	 ENMs	 and	 hypervolume	 ap-
proaches and more comprehensive data in the marine environment 
would improve this temporal hypervolume assessment and allow the 
emergence of new species distribution predictors. Hypervolumes 
were estimated based on environmental factors with low contrast 
in the region which may complicate the niche temporal evalua-
tion.	 This	modeling	 approach	 followed	 a	 standard	protocol	 (Zurell	
et al., 2020),	but	we	recognize	that	alternative	model	structures	may	
alter	hypervolume	outcomes.	Consistent	and	basic	ENM	structures	
were assumed in this study because the model structure could af-
fect hypervolume estimations, but a deeper examination of model 
structures	was	beyond	 the	 scope	of	 this	work.	Another	 limitation	
faced during this study was that this sample design did not cover the 
entire geographic distribution of the species, thus we may not fully 
capture the environmental space of such species, nor population size 
effects. We acknowledge that accessible area of species is crucial 
for	niche	modeling	(Barve	et	al.,	2011),	but	the	fully	quantification	of	
species-	realized	niches	requires	high	computational	capacity	and	a	
complete	sampling	coverage.	In	line	with	that,	some	ENMs	may	not	
produce bounded niche hypervolumes that may be determined by 
spatial scale of the study and so the range of values of environmen-
tal	factors.	Although	the	geographical	space	was	relatively	limited	in	
relation to the geographic ranges of these species, this did not pre-
clude the ability to capture changes in the estimated environmental 
niches	 among	 species,	 years,	 and	ENM	algorithms	 from	 sampling-	
based information at this spatial scale.

5  |  CONCLUSION

Our	results	demonstrate	the	effects	of	ENM	algorithm,	population,	
sampling, and environmental factors on species niche estimation and 
interpretation. Such factors caused fluctuations in species estimated 
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    |  11 of 14VILAS et al.

niche and affected the pooled niche estimate. We suggest a prelimi-
nary examination of factors affecting the estimated niche dynam-
ics that should be corrected when comparing niche estimates. We 
should rather calculate a pooled niche for a comprehensive estimate 
that can remove the temporal fluctuation on the estimated niche and 
help	to	provide	management	and	conservation	advice.	Biased	niche	
estimates may impact species response functions and predicted 
geographic space that may lead to erroneous management and con-
servation	decisions.	Niche	interpretation	may	be	relevant	for	studies	
in which trophic functions may have a critical influence on spatial 
ecosystem model dynamics (Plagányi, 2007; Shin et al., 2010)	such	
as Ecospace (Christensen et al., 2008).	The	study	demonstrated	that	
our	niche	analysis	approach	may	contribute	to	effectively	quantify-
ing	and	assessing	niche	dynamics.	By	evaluating	the	temporal	niche	
variability, we showed the effect of environmental perturbations 
on the estimated niche. This may help to understand the resiliency 
of some species to environmental perturbations and rapid environ-
mental changes that can improve the management and conservation 
of species, for example, by providing spaces where impact mitiga-
tion is possible (Scheele et al., 2017).	In	the	future,	stressors	such	as	
red tide events are expected to increase in terms of occurrence and 
magnitude	(Anderson	et	al.,	2021).	Evaluating	changes	 in	temporal	
niche volume of species may help assess the adaptability, genetic 
diversity, and evolutionary responses to perturbation events.
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