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Abstract
Understanding how species respond to the environment is essential in ecology, evo-
lution, and conservation. Abiotic factors can influence species responses and the 
multi-dimensional space of abiotic factors that allows a species to grow represents 
the environmental niche. While niches are often assumed to be constant and robust, 
they are most likely changing over time and estimation can be influenced by popu-
lation biology, sampling intensity, and computation methodology. Here, we used a 
12-year time series of survey data to fit annual ecological niche models (ENMs) for 
10 marine fish species by using two regression and two machine learning algorithms 
to evaluate the variation and differentiation of environmental niches. Fitted ENMs 
were used to develop multi-dimensional annual and pooled hypervolumes that were 
evaluated over time and across ENM algorithms, species, and years by computing 
volume, distance, and dissimilarity metrics for each annual estimated niche. We then 
investigated potential drivers of estimated hypervolume dynamics including species 
abundance, species occurrence, sampling effort, salinity, red tides severity, and algo-
rithm. Overall, our results revealed that estimated niches varied over time and across 
ENM, species, and algorithms. Niche estimation was influenced over time by multiple 
factors suggesting high complexity on niche dynamics interpretation. Species with 
high occurrence tended to have a closer representation of the pooled niche and years 
with higher abundance tended to produce niche expansion. ENM algorithm, sampling 
effort, seawater salinity, and red tides explained the deviations from the pooled niche. 
Greater sampling effort led to more comprehensive and complete estimates of spe-
cies niches. High red tides severity triggered niche contraction. Our results emphasize 
the predictable effects of population, sampling, and environment on species niche es-
timation and interpretation, and that each should be considered when performing and 
interpreting ecological niche analyses. Our niche analysis approach may contribute to 
effectively quantifying and assessing niche dynamics.
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1  |  INTRODUC TION

The spatiotemporal distributions of species are key aspects for ad-
dressing issues related to ecology, evolution, and conservation (Elith 
& Leathwick, 2009). At large spatiotemporal scales, species are dis-
tributed over space and time because of the influence of abiotic or 
environmental factors that affect physiology, phenology, behavior, 
and geographic ranges. Changes in environmental factors, such as an 
increase in seawater temperature, may cause shifts in marine species 
distributions, thus affecting the structure and functioning of marine 
ecosystems (Pinsky et al., 2020), as well as the ecosystem services 
they provide (Plagányi, 2019). Therefore, evaluating changes in en-
vironmental niche space over time is essential for the conservation 
and management of species and ecosystems.

Ecological niche theory emphasizes that species use specific 
resources, habitats, and environments, and their distributions are 
often based on non-linear relationships with respect to abiotic fac-
tors (Hutchinson, 1957). To describe the ecological niche of a spe-
cies, Hutchinson  (1957) proposed the n-dimensional hypervolume 
defined as a multi-dimensional space of abiotic factors, also known 
as environmental space, that corresponds to an environmental state 
that would allow a species to grow and reproduce. The niche conser-
vationism hypothesis states that species and taxonomic groups tend 
to retain their niches and related ecological traits over space and 
time (Peterson, 2011; Wiens & Graham, 2005). In practice, recent 
developments in niche quantification tools can help to better un-
derstand the interpretation and estimation of ecological niches over 
time (Blonder et al., 2017).

Niche estimation could vary over time depending on intrinsic 
population, environmental, sampling, or temporal scale factors. 
Population size and competition or predation variation may cause 
species range contraction or expansion that could alter the estimated 
ecological niche (Jankowski et al.,  2013; von Takach et al.,  2020). 
Environmental perturbations can decrease habitat quality, and 
cause individuals to move away from impacted areas and therefore 
temporally affect ecological niche estimation (Fredston et al., 2021; 
Gannon et al., 2009). Factors related to the sampling process may 
also influence ecological niche interpretation (Boria et al., 2014). For 
instance, the extent of the study area can be crucial for species distri-
butions and ecological niche modeling (Barve et al., 2011). At larger 
temporal scales, ecological niche estimation can be impacted by 
non-stationarity in species' environmental relationships (Kingsbury 
et al.,  2020). This process is also known as niche adaptation and 
may result in a niche expansion. Besides temporal changes, niche 
estimation can be affected by the algorithm that is applied to pre-
dict species occurrence. Several studies evaluated the differences 
among ecological niche model (ENM) formulation, parametrization, 
and algorithm predictions (Bucklin et al., 2015; Citores et al., 2020; 
Norberg et al., 2019), although the effect of ENM algorithm transfer-
ability, selection, and parametrization of hypervolume niche estima-
tion remains poorly known.

Species niche variations over time call for developing and im-
plementing methods that quantify and evaluate temporal niche 

fluctuations. Temporal niche changes may be estimated by using 
diel activity patterns (e.g., Watabe et al.,  2022), diet information 
(e.g., Grüss et al., 2020), or abundance, biomass, or occurrence in-
formation (e.g., von Takach et al., 2020). Multiple tools and analyses 
have been used to quantify temporal niche differentiation, for ex-
ample, niche breadth (e.g., White et al., 2015), Principal Component 
Analysis (e.g., Broennimann et al., 2012), species distribution overlap 
(e.g., Banerjee et al., 2019), and niche hypervolume (e.g., Carvalho 
& Cardoso,  2020). Among these methods, multidimensional niche 
estimation represents a novel and powerful tool to analyze and fully 
explore niche dynamics over time.

Multiple approaches for estimating species’ ecological niches 
have since been developed (Sexton et al.,  2017). For example, 
association-based techniques, like the n-dimensional hypervolume 
framework, measure niche breadth through multivariate statistical 
assessments of species occurrences related to specific abiotic fac-
tors (e.g., Blonder et al., 2014). The hypervolume approach quanti-
fies the environmental niche or space that is occupied by a species 
and represented by the major traits and/or environmental factors 
affecting a species (Blonder et al., 2014, 2017). The n-dimensional 
hypervolume approach provides simple means for comparing niche 
hypervolumes, and is a powerful tool to assess differences and sim-
ilarities among ecological niches (Mammola, 2019). Hypervolumes 
have been successfully applied to quantify, compare and represent 
realized niches of multiple species and communities and to address 
ecological, evolutionary, palaeoecological, conservation, and cli-
mate change questions (Blonder et al., 2017). For instance, loss of 
ecological trait diversity was predicted for terrestrial mammals and 
birds by investigating hypervolumes under future climatic scenarios 
(Cooke et al., 2019). Additionally, the hypervolume approach can be 
used to calculate environmental niches by using ENMs and/or spe-
cies distribution models (SDMs; Blonder et al., 2014; Drake, 2015). 
Here, we used ENM and SDM terms interchangeably because these 
terms are closely related (but see Peterson & Soberón, 2012). Some 
ENM algorithms have been developed beyond the hypervolume 
concept by including more complexity and biotic and other factors 
(e.g., Thorson,  2019). Nonetheless, hypervolume approaches can 
provide insights into the assumptions and behavior of many ENM 
tools (Blonder et al., 2017).

We addressed the problem of estimating environmental niche 
hypervolumes over time using a large-scale marine fish monitoring 
program spanning a 12-year period. First, we asked whether the es-
timation of niche hypervolumes varied over time. To do so, we fitted 
pooled (12 years of data combined) and year-specific ENMs for 10 
dominant fish taxa across the West Florida Shelf using four model-
ing algorithms. For each algorithm, we estimated hypervolumes and 
how components of annual hypervolumes that changed over time 
related to the 12-year pooled hypervolume to quantify the extent 
of temporal dynamics in estimated hypervolumes. Second, we asked 
what factors may explain variation in hypervolumes over time, fo-
cusing on variation in sampling, modeling algorithm used, intrinsic 
factors that may influence density-dependent habitat selection, and 
temporal changes in environmental factors that may alter species 
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responses. Sampling and model algorithms focus on the sensitiv-
ity of study design and analysis to affect hypervolume estimation, 
whereas intrinsic factors and environmental factors focus on how 
hypothesized processes may expand or constrict the expected 
hypervolume of a species. This approach may help to determine 
temporal shifts of niche hypervolumes, explore potential factors 
affecting the niche temporal interpretation, and find the most ap-
propriate ENM algorithm to capture the responsiveness of species 
to environmental variation or niche plasticity (Gabriel et al., 2005). 
The novel framework we present here may help to analyze niche 
dynamics over time and so disentangle the effects of factors affect-
ing the ecological niche interpretation and estimation over time that 
could be relevant for management and conservation purposes and 
improve spatiotemporal ecosystem modeling by accounting for such 
variability.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The West Florida Shelf (WFS) is located in the eastern region of the 
Gulf of Mexico and extends from the west coast of Florida to about 
87.5W longitude. The WFS is a broad shelf and covers approximately 
170,000 km2, with a depth range between 0 and 200 m (Okey & 
Mahmoudi, 2002; Figure 1). In this region, sea surface temperature 

fluctuates seasonally between 17°C in winter and 30°C in sum-
mer (Liu & Weisberg,  2012), while salinity varies between 5 and 
35 parts per thousand, with salinity patterns mainly driven by river 
outflows. The WFS exhibits high species richness relative to other 
Gulf of Mexico regions (Harte Research Institute for Gulf of Mexico 
Studies, 2016; Murawski et al., 2018), fosters a diversity of benthic 
habitat types, including natural reefs (Darnell, 2015), and supports 
valuable recreational and commercial fisheries (Florida Fish and 
Wildlife Conservation Commission, 2020a; NOAA, 2020). However, 
the WFS region has been impacted by multiple stressors during the 
last decade: overexploitation, invasive species, red tides, hypoxic 
events, and oils spill have caused major impacts at ecological levels 
affecting species, ecosystems, and services (Chagaris et al.,  2020; 
Driggers et al., 2016; Murawski et al., 2016).

2.2  |  Presence–absence data

Presence and absence records were extracted from the Southeast 
Area Monitoring and Assessment Program (SEAMAP; https://www.
gsmfc.org/seamap.php; Rester,  2017) bottom trawl dataset, which 
is a fishery-independent survey program operating during summer 
and fall in the Gulf of Mexico since 1981 and on the WFS since 2008 
(Figure S1). During each summer or fall survey, stations were randomly 
distributed each year on the continental shelf (depth range between 10 
and 200 m) and for each station, a 30-minute tow was conducted with 

F I G U R E  1 Location of the West 
Florida shelf study region.

 20457758, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9604 by U

niversity O
f Florida, W

iley O
nline L

ibrary on [14/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.gsmfc.org/seamap.php
https://www.gsmfc.org/seamap.php


4 of 14  |     VILAS et al.

a 40-ft trawl towed at a speed of 2.5 knots (Figure S2). At each station, 
all marine organisms were identified, and abundance and biomass were 
calculated for each species. The SEAMAP trawl survey used a bottom 
trawl that mainly targets demersal and benthic species.

We filtered the trawl dataset for WFS stations (all since 2009) 
using latitude and longitude. Then, we selected the 10 most common 
demersal species in terms of numeric abundance with at least 20 
presence points in each year to avoid unreliable predictions since 
sample size can dictate the ability to capture the environmental 
responses (Elith & Franklin,  2013; Wood,  2017). The 10 selected 
demersal species included: Scrawled cowfish (Acanthostracion 
quadricornis), Twospot flounder (Bothus robinsi), Littlehead porgy 
(Calamus proridens), Sand perch (Diplectrum formosum), Tomtate 
grunt (Haemulon aurolineatum), Pinfish (Lagodon rhomboides), Lane 
snapper (Lutjanus synagris), Bluespotted searobin (Prionotus roseus), 
Inshore lizardfish (Synodus foetens), and Snakefish (Trachinocephalus 
myops; Table 1). These species capture a broad range of taxa and life-
history strategies and represent the bulk of demersal fish biomass 
on the WFS dataset (>40% of total fish biomass).

2.3  |  Environmental data

We used in situ environmental data to fit ENMs and annual environ-
mental raster data to build hypervolumes for comparison purposes. 
Most stations in the SEAMAP dataset incorporated in situ sea surface 
temperature (SST), sea surface salinity (SSS), and depth measurements 
made with conductivity, temperature, and depth (CTD) sensors. To cal-
culate annual environmental data, environmental monthly raster data 
were extracted from the Hybrid Coordinate Ocean Model (HYCOM; 
Chassignet et al., 2007) except for depth (NOAA National Geophysical 
Data Center, 2001). SST and SSS monthly raster data were averaged 
for each year to compute annual raster data. The spatial resolution of 
raster data was 0.041 × 0.041 degrees (~5 km). We used environmen-
tal raster data for prediction instead of in situ environmental data to 
ensure that all stations included environmental data. Environmental 
raster data were scaled by Z-transformation.

2.4  |  Ecological niche models

Species presence–absence was used to fit binomial ecological niche 
models. Depth, SST, and SSS were considered as potential explana-
tory variables because of their known influence on the distribution 
of the marine community (Melo-Merino et al., 2020). We calibrated 
annual ENMs and a 12-year ENM (pooled ENM) for each species in 
order to evaluate how ENMs varied over time compared to the long-
term (12-year) average ENM. Modeling each year separately allowed 
to more clearly interpret temporal variation on the environmental 
niche. For each species, we fitted annual ENMs by applying two re-
gression algorithms (generalized linear models and generalized ad-
ditive models) and two machine learning algorithms (random forest 
and boosted regression trees). Generalized linear models (GLMs) are 

linear regression models that are based on an assumed relationship 
using a link function between the response variable and the linear 
combination of the explanatory variables (Dobson & Barnett, 2018). 
GLMs can predict non-linear response functions by adding quad-
ratic or polynomic terms. GLMs were implemented with the glm 
function in [R] (R Core Team,  2017). Generalized additive models 
(GAMs) are also regression models based on relationships between 
response and explanatory variables in which smooth functions are 
additive and provide a flexible method for identifying nonlinear co-
variate effects (Wood,  2017). GAMs were fitted using the “mgcv” 
package (Wood & Wood, 2015) implemented in [R]. Random forest 
(RF) models build decision trees using different bootstrap samples 
of data that predict nonlinear response functions. Decision trees are 
selected by the bagging method that each occurrence has an equal 
probability of being selected in subsequent subsamples. Each node 
is split using the best among a subset of predictors randomly cho-
sen at that node (Breiman, 2001). RF models were fitted using the 
“randomForest” package (Liaw & Wiener, 2002) implemented in [R]. 
Boosted regression trees (BRT) models combine regression trees 
with boosting algorithms. Similar to RF, BRT models repeatedly fit 
many decision trees to improve the accuracy of the model, but BRT 
uses a boosting method for building decision trees in which occur-
rence data are weighted in subsequent trees (Elith et al., 2008). BRT 
models were fitted using the “gbm” package (Ridgeway, 2007) imple-
mented in [R].

Selected algorithms were utilized because of their importance 
in predicting response functions and describing environment 
niches (Elith & Leathwick,  2009). Each algorithm has some ad-
vantages, assumptions, and limitations and may provide different 
environmental responses (e.g., Norberg et al., 2019). Thus, model 
selection was not included in the calibration process. For com-
parison purposes, ENMs were built in the most consistent, par-
simonious, and least complex structure possible as we aimed to 
reproduce similar and flexible response functions. All ENMs were 
fitted by using binomial information (presence–absence) and for-
mulated to capture nonlinear responses. For GLMs, we added a 
quadratic term to each explanatory variable so response functions 
can reproduce unimodal response functions. For GAMs, we im-
plemented the generalized cross-validation method to estimate 
smoothing parameters. Additionally, we restricted the degrees of 
freedom of smooth functions for each explanatory variable (k = 4) 
to avoid oversmoothing and specified a gamma parameter of 1.4 
to avoid overfitting (Wood,  2017). RFs and BRTs automatically 
fit nonlinear response functions through regression trees (Elith 
et al., 2008), three variables were chosen at each node, and the 
number of trees was set to as default values (500 and 100 trees, 
respectively) following previous studies (e.g., Aguirre-Gutiérrez 
et al., 2013).

To evaluate fitted ENMs, we used an approach adopted in 
previous marine species distribution modeling studies (e.g., Grüss 
et al.,  2014, 2021). For each dataset, we used bootstrapping by 
resampling with replacement (n  =  1000 bootstrap datasets) to 
evaluate models. We used this bootstrap method rather than a 
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cross-validation (leave-one-out) method because of the limited 
number of samples. Then, we evaluated ENMs by computing the 
area under the curve (AUC), the true skill statistic (TSS), and the 
root-mean squared error (RMSE). AUC values, which were ob-
tained by using the ‘ROCR’ [R] package (Sing et al., 2005), range 
from 0 to 1, with 0.5 being as good as random and values close to 
1 indicative of perfect prediction (Fielding & Bell, 1997). The TSS 
index ranges from −1 to +1, where +1 indicates perfect agreement 
and values of zero or less indicate a performance no better than 
random (Allouche et al., 2006). The RMSE measured the average 
prediction error and so the lower the RMSE, the better the model 
performance.

2.5  |  Hypervolumes

After ENM calibration for each species, models were used to calcu-
late annual three-dimensional (depth, SST, and SSS) hypervolumes 
for each species. A complete flowchart of annual hypervolume 
constructions was represented to visualize the analytical process 
(Figure S1). The n-dimensional hypervolume framework was imple-
mented to compute and analyze annual multidimensional hyper-
volumes for each species by using the “hypervolume” [R] package 
(version 3.04) (Blonder et al., 2014, 2018). Niche hypervolumes are 
defined by the bounds of scaled and centered environmental fac-
tors (Blonder et al.,  2018). Specifically, three-dimensional hyper-
volumes of species were generated for each year by sampling from 
fitted ENMs. We used the function hypervolume_general_model() to 
generate hypervolume statistics from an ENM model directly. This 
approach uses rejection sampling to obtain predicted values of a 
model object at uniformly random points within a range box from 
data, then converts the output to a hypervolume and facilitates the 
interpretation of ENM outputs as hypervolume functions (Blonder 
et al., 2017).

To evaluate whether the estimation of niche hypervolumes var-
ied over time, we computed distance, volume, and dissimilarity met-
rics between each annual hypervolume to the pooled hypervolume 
for each species (Mammola, 2019; Figure 2a). Such metrics represent 
a proxy of niche overlap and high niche overlap is expected when 
the hypervolume comparison obtained low distance, low volume 
change, low inverse intersection, and low dissimilarity. To evaluate 
the distance between hypervolumes, we obtained the centroid dis-
tance and the minimum distance. The centroid distance is defined as 
the Euclidean distance between the centroids of two hypervolumes 
(Figure 2b). The minimum distance represents the pairwise minimum 
Euclidean distance between two sets of random points comprising 
two hypervolumes (Figure 2c). To estimate the shared volume be-
tween hypervolumes, we used four metrics: the volume change, the 
inverse intersection, the Sørensen-Dice dissimilarity index, and the 
Jaccard dissimilarity index. The inverse intersection of two hyper-
volumes is calculated as the inverse of the fraction of points falling 
within the boundaries of both hypervolumes (Figure 2d). The volume 
change was computed as the absolute volume difference between 
the pooled and the annual hypervolume (Figure 2e). Both Sørensen-
Dice and Jaccard dissimilarity indices represent the overlap level 
between two hypervolumes and their values range from 0 (fully 
overlapped) to 1 (fully disjunct) (Figure 2f,g). Low dissimilarity values 
indicate a high overlap between the annual estimated niche and the 
pooled niche.

2.6  |  Linear mixed-effects models

To explore factors affecting the temporal variation in niche hypervol-
ume estimates, we fitted linear mixed-effects models (LMMs; Zuur 
et al., 2009) by using the “nlme” [R] package (Pinheiro et al., 2017; 
version 3.1-157). We selected centroid distance, volume change, and 
the Sørensen-Dice similarity index as response terms because of 

TA B L E  1 Annual species occurrence of the 10 demersal fish species selected among SEAMAP trawl samples to estimate environmental 
niche hypervolumes.

Species
2009 
(241)

2010 
(243)

2011 
(151)

2012 
(237)

2013 
(209)

2014 
(297)

2015 
(261)

2016 
(215)

2017 
(257)

2018 
(260)

2019 
(237)

2020 
(90)

Diplectrum formosum 199 167 113 188 167 240 215 184 227 215 208 71

Synodus foetens 192 187 110 165 148 216 156 154 199 199 187 63

Acanthostracion 
quadricornis

157 102 78 102 130 182 128 121 159 161 147 56

Haemulon aurolineatum 163 137 88 163 105 158 139 100 148 135 125 41

Trachinocephaus myops 125 126 66 92 120 144 119 108 167 154 148 65

Lutjanus synagris 108 82 55 109 90 138 112 89 114 123 97 49

Bothus robinsi 96 85 50 66 83 115 103 102 129 118 118 54

Calamus proridens 106 115 53 114 82 125 111 80 105 97 83 43

Prionotus roseus 91 80 46 71 73 97 97 87 96 111 109 50

Lagodon rhomboides 110 68 59 107 67 103 72 41 89 78 78 37

Note: Numbers in parentheses represent the number of samples for each year, while numbers in the table indicate the number of samples a given 
species was observed in the trawl catch.
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their variable trend over time and species as a random intercept. For 
each niche hypervolume metric, we calibrated and evaluated one 
null model (including only random effects) and seven models that 

differed in the inclusion of fixed effects that may affect the estima-
tion of niches. LMMs included a temporal autocorrelation term to 
statistically consider independence on time series estimates.

F I G U R E  2 Representation of pooled and annual hypervolumes into a two-dimensional space defined by two environmental factors and 
six metrics used to compare hypervolumes (adapted from Mammola, 2019). (a) Each hypervolume represents the environmental niche of a 
species. Hypervolume contour lines identify and bound environmental niches edges. Stochastic colored points represent the random points 
that are generated to construct the hypervolumes. Centroids identify the center of the hypervolume. Hypervolumes can be compared using 
six metrics (b) centroid distance, (c) minimum distance, (d) inverse intersection, (e) volume change, (f) Sørensen-dice dissimilarity index, and 
(g) Jaccard dissimilarity index.
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    |  7 of 14VILAS et al.

As fixed effects, we separately investigated multiple factors: 
two factors representing intrinsic population aspects (annual mean 
abundance [average caught individuals per year] and occurrence 
[percentage of stations with at least one individual caught]), one fac-
tor related to sampling effort (effort [n samples]), three environmen-
tal factors (SST, SSS, and red tides severity), and the ENM algorithm. 
We computed the annual average of temperature and salinity time 
series from HYCOM data, while the red tides time series was calcu-
lated by using Karenia brevis cells concentration data collected by the 
Florida Fish and Wildlife Conservation Commission (FWC; 2020b). 
Since LMMs differed in their fixed effects structure, we calculated 
the likelihood-ratio test (LRT; Harrison et al., 2018) by using the “lm-
test” [R] package (Hothorn et al., 2015) to compare LMMs. The LRT 
evaluates the goodness of fit between two models and was used 
to assess if the inclusion of a fixed effect significantly improves the 
model fit with respect to the null model. If significant, the variance 
on the annual niche estimation could be partially explained by each 
of the considered factors (ANOVA, p-value). For each model con-
taining fixed effects, we also calculated the marginal R2 that rep-
resents the proportion of variance explained by the fixed effects and 
the ratio of variance explained by the fixed effects over the total 
explained variance (Nakagawa & Schielzeth, 2013). The marginal R2 
comparison helped to elucidate the most important factors affecting 
temporal niche interpretation.

3  |  RESULTS

Overall, model evaluation results indicated acceptable performance 
of ENMs. Most ENMs (80%, 416 ENMs out of 520) obtained an AUC 
value higher than 0.7, a TSS value higher than 0.4, and a RMSE value 
lower than 0.5 (Table S1). The levels with the highest proportion of 
inaccurate ENMs (AUC < 0.7, TSS < 0.4, and RMSE > 0.5) were RF for 
the model algorithm.

Species niche results varied among metrics, species, and algo-
rithms (Figure  3; Figure  S3). Species and algorithm differences in 
niche estimations were noticeable for centroid distance, volume 
change, and dissimilarity metrics (Figure 3). Most annual niche esti-
mates of species were highly dispersed because of the variation over 
time in these metrics. Regarding species, Diplectrum formosum and 
Synodus foetens obtained low centroid distance, inverse intersec-
tion, and dissimilarity indicating that low variability in the estimated 
niche space over time, while other species such as Lutjanus synagris 
showed high values for these metrics (Figure 3). Low distance, in-
verse intersection and dissimilarity estimates were found for some 
common species (high occurrence) such as Diplectrum formosum 
(Table  1). In terms of ENM algorithms, the GAM obtained slightly 
higher centroid distance, while the GLM showed higher volume 
change. The GAM and RF obtained the highest dissimilarity hyper-
volume estimates (Figure 3).

F I G U R E  3 Metric estimates from hypervolume comparison (annual–pooled) across ecological niche modeling (ENM) algorithm and 
species. Colors represent ENM algorithms: Generalized Linear Model (GLM), Generalized Additive Model (GAM), Random Forest (RF), and 
Boosted Regression Trees (BRT). Boxplots indicate the distribution over all annual hypervolume values (median, the 10th and the 90th 
percentiles) for each species and algorithm group. Species are sorted from most to least common.
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8 of 14  |     VILAS et al.

Estimated niche dynamics also showed high dispersion, fluctua-
tions, and differences among algorithms, species, and metrics over 
time (Figure 4; Figure S3). Consistent changes on hypervolume trends 
over time were captured with centroid distance, volume change, and 
dissimilarity metrics. Estimated niche dynamics displayed highly dis-
persed values due to variance among species, especially for the cen-
troid distance and GAM and BRT (Figure 4). Centroid distance, volume 
change, and dissimilarity metrics fluctuate synchronically and similarly 
over time. In 2009, 2010, 2013, and 2020, niche estimation obtained 
high distance, volume change, and dissimilarity indicating low similar-
ity to the pooled niche, while low distance, volume change, and dissim-
ilarity were found in 2012, 2015, 2017, and 2019 (Figure 4).

LMMs results showed that several factors may drive annual 
niche estimation (Figure 5; Table S2). Volume change obtained the 
highest variance explained by fixed effects followed by dissimilar-
ity (Figure 5). The most important factors affecting niche temporal 
estimation were ENM algorithm, occurrence, sampling effort, SSS, 
and red tides (Table S2). Niche distance dynamics were driven pos-
itively by ENM and red tides and negatively by sampling effort, and 
SSS. Thus, ENM algorithm influenced the niche distance dynamics 
and high levels of red tides and low of sampling effort, and SSS pro-
duced high niche distance. ENM algorithm, occurrence, red tides, 
sampling effort, SST, and SSS significantly affected the estimation 
of annual species niche volumes and ENM algorithm explained the 
highest levels of variance which indicates that volume change was 
primarily driven by the ENM algorithm choice. Species niche dis-
similarity was driven negatively by occurrence, sampling effort, 
SST, and SSS and positively by ENM algorithm and red tides, which 
indicates that dissimilarity niche were affected by ENM algorithm 
and high niche dissimilarity estimates were expected under low oc-
currence, sampling effort and SSS and high levels of red tides.

4  |  DISCUSSION

Niche quantification is increasingly applied in evolution, conser-
vation, and ecology (e.g., James et al., 2020; Lesser et al., 2020; 
White et al., 2021). Previous studies demonstrated that estimated 
niches may contract, expand, or shift over time due to popula-
tion or environmental factors (e.g., Carvalho & Cardoso,  2020; 
Chapman et al., 2017; Ern et al., 2017). Our results illustrated that 
ENM algorithm, environment, sampling effort, and species preva-
lence may affect the species niche interpretation. This study also 
demonstrated the capabilities of this methodology to analyze 
niche dynamics over time. Therefore, such temporal niche ap-
proach may be relevant for conservation, management, and spe-
cies distribution modeling.

4.1  |  The dynamics of niche hypervolumes

Our results indicated that ENM predictions were accurate and 
temporal niche interpretations were robust. Species displayed 

differences in terms of mean metric estimates and interannual 
variability. Interspecific niche distinction is primarily driven by 
their contrasting preferences for particular resources, habi-
tats, and environments (Sexton et al., 2017). The species results 
showed that some common species like Diplectrum formosum 
obtained lower mean levels of distance, and dissimilarity among 
years and so high niche overlap between annual and pooled. 
These results supported that niche estimation may be affected 
by population processes such as range contraction or expansion. 
Species traits and information, for example, species prevalence, 
can provide conclusions on conservation status, risk assessment, 
and gear catchability (Chapman et al., 2018; Enquist et al., 2019; 
Young et al., 2019). Species prevalence may also bias model esti-
mates (Sillero et al., 2021). Common species tend to remain con-
sistent over ecological timescales (Gaston,  2011) and produce a 
more statistically reliable relationship with environmental factors 
than least common (Segurado & Araujo, 2004) and least common 
species tend to be misspecified (Smith et al., 2019). On the other 
hand, such niche differences across species may be caused by the 
contrasting plasticity and vulnerability of species to changing en-
vironmental conditions (Gabriel et al., 2005; Sexton et al., 2017).

The RF algorithm obtained high dissimilarity hypervolume es-
timates. Machine learning methods like RF demonstrated strong 
performance in predicting outcomes (Elith, 2019). High dissimilarity 
levels may suggest a poor informative estimated niche, but this may 
help to capture niche fluctuations. These results are in line with the 
low level of accuracy of the hypervolumes fitted using RF. The high 
centroid distance and dissimilarity revealed for GAM and the high 
volume change for GLM may suggest the ability of such ENM al-
gorithm to capture niche fluctuations. This also can indicate more 
relaxed environmental response curves and niche space estimation 
that may be uninformative for conservation purposes by overesti-
mating species niche (Warren et al., 2020), but it can represent an 
advantage for studies with alternative objectives such as coupling 
ENMs with ecosystem models (Coll et al., 2019). Recent studies rec-
ommended GAMs over other approaches for computing environ-
mental response functions (Brodie et al., 2020; Püts et al., 2020). In 
marine environments, correlative models such as GAM have been 
more frequently used than other machine learning approaches. 
However, no single best ecological niche algorithm exists because 
its predictive power depends on the approach's assumptions and the 
particularities of the species (Qiao et al., 2015).

4.2  |  Factors explaining temporal variability in 
hypervolumes

ENM algorithm was identified as an important factor explaining 
fluctuations in estimated niche distance, volume, and dissimilar-
ity. ENM algorithm should be considered when evaluating niche 
changes over time, specially niche volume variations, and GLM and 
GAM may help to better capture such temporal niche variations be-
cause of their ability to differentiate among annual niche estimates 
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    |  9 of 14VILAS et al.

and the pooled niche estimates. We recommend to explore multi-
ple ENM algorithms when investigating niche fluctuations because 
ENM algorithms results may differ depending on species traits (Qiao 
et al., 2015). Occurrence explained a proportion of variance of esti-
mated niche dissimilarity and volume trends. The high occurrence 
was associated with lower estimated niche dissimilarity and volume, 

indicating little interannual variation in hypervolume for commonly 
occurring species. Occurrence and abundance can induce range ex-
pansion or contraction in marine species (Thorson et al., 2016; von 
Takach et al., 2020) and thus alter the temporal niche interpretation. 
Population size may affect niche distance, position, and volume and 
thus it should be considered when temporally interpreting species 

F I G U R E  4 Time series of metric estimates from hypervolume comparison (annual - pooled) across ecological niche modeling (ENM) 
algorithm. Colors represent ENM algorithms: Generalized Linear Model (GLM), Generalized Additive Model (GAM), Random Forest (RF), 
and Boosted Regression Trees (BRT). Boxplots indicate distribution over all annual hypervolume values (the median, the 10th, and the 90th 
percentiles) for each year and algorithm group. Lines indicate mean time series of species across ENM.

F I G U R E  5 Percent of total variance explained from linear mixed models of each investigated factor for (a) centroid distance, (b) volume 
change, and (c) Sørensen-dice dissimilarity index trends. Asterisks and bold sections and factor names identify significant factors (ANOVA, 
p < .05). Blue color represents positive effects and red color represents negative effects.
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niches. The population size effect could be further explored and re-
duced if necessary by fitting ENMs with abundance data instead of 
presence/absence data.

Sampling effort results showed relevant effects for distance, 
volume, and dissimilarity niche time series and this factor mainly 
explained niche similarity. Its negative effects for dissimilarity, dis-
tance, and volume indicated that the higher the sampling effort, the 
more comprehensive and complete species niches were obtained. 
The number of samples is a key aspect of ENMs and may affect the 
model performance and accuracy (Hernandez et al.,  2006; Siders 
et al.,  2020; Stockwell & Peterson,  2002). These results demon-
strated that sample design may affect niche interpretation because 
variation in sampling effort could bias niche estimates.

Our results suggested negative effects of salinity and tempera-
ture on niche distance, volume change, and dissimilarity. The in-
creasing seawater salinity and temperature due to climate change 
may affect species ranges (McHenry et al.,  2019; Purtlebaugh 
et al.,  2020) or pushing species to occupy restricted refugia 
(Stralberg et al., 2020) and consequently altering the ecosystem and 
the food web. However, the influence of SSS and SST on niche dy-
namics represents an unexpected finding that may be due to the 
effect of a small number of samples on nearshore estuarine loca-
tions with low salinity levels (Figure S1). This uncertainty could po-
tentially be reduced by incorporating sampling over a broader range 
of the species' geographic distribution and environmental space. The 
effect of environment on niche over time indicated that niche es-
timation could become more uncertain under a climatic change as 
species distribution is shifting. This might result in ENMs and pre-
dictions about species distributions that are obsolete, and it would 
require routine long-term monitoring data to account for the effect 
of changing environmental conditions. Uncertainty may be reduced 
by increasing the study area to capture a broad range of species geo-
graphic distribution and so environmental conditions. By tracking 
the effect of environmental factors such as SSS on niche estimation, 
the temporal variation on the niche interpretation may provide com-
prehensive information on species niche and its conservation under 
climate change. Other factors such as food availability, water qual-
ity, and top-down predation affect species physiology, distribution, 
fitness, behavior, phenology, and growth (Alfonso et al., 2021; Free 
et al., 2019; Pinsky et al., 2013), and should also be investigated to 
interpret species niches.

Similar to SST and SSS, red tides helped to explain variance in 
distance, volume, and dissimilarity. Red tides increased niche dis-
tance, volume, and dissimilarity, so high levels of red tides could 
impact estimated niches and hamper its interpretation. These es-
timated changes may be caused by species range contraction as 
shown with other stressors (Scheele et al.,  2017). In the eastern 
Gulf of Mexico, periodic red tide events impact fish populations 
(Sagarese et al., 2021), communities, and ecosystems (Gray DiLeone 
& Ainsworth, 2019) and may cause emigration from impacted areas 
(Vilas et al.,  2021). The WFS region experienced severe red tide 
events between 2005 and 2020 (Karnauskas et al., 2019; Walter III 

et al., 2015) which was captured by the present niche temporal as-
sessment, for instance, the niche dissimilarity in 2019, and 2020. The 
low proportion of variance explained could be due to the localized 
and often short-lived nature of red tides. Severe red tides typically 
occur close to shore in southwest Florida during the late summer and 
fall, which rarely coincides with the SEAMAP trawl samples. Despite 
this, it is possible that the impacts of a red tide bloom span beyond 
the immediate area and could persist longer than the bloom itself 
as hypoxic conditions often develop. Understanding how episodic, 
spatially restricted stressors impact niche interpretation is essential 
in regions affected by multiple stressors such as the Gulf of Mexico 
and may be further explored to investigate species vulnerability and 
plasticity.

4.3  |  Limitations and uncertainties

We demonstrated that the hypervolume approach is a powerful 
tool to evaluate niche interpretation. Environmental and biological 
information play important roles in ENMs and hypervolume ap-
proaches and more comprehensive data in the marine environment 
would improve this temporal hypervolume assessment and allow the 
emergence of new species distribution predictors. Hypervolumes 
were estimated based on environmental factors with low contrast 
in the region which may complicate the niche temporal evalua-
tion. This modeling approach followed a standard protocol (Zurell 
et al., 2020), but we recognize that alternative model structures may 
alter hypervolume outcomes. Consistent and basic ENM structures 
were assumed in this study because the model structure could af-
fect hypervolume estimations, but a deeper examination of model 
structures was beyond the scope of this work. Another limitation 
faced during this study was that this sample design did not cover the 
entire geographic distribution of the species, thus we may not fully 
capture the environmental space of such species, nor population size 
effects. We acknowledge that accessible area of species is crucial 
for niche modeling (Barve et al., 2011), but the fully quantification of 
species-realized niches requires high computational capacity and a 
complete sampling coverage. In line with that, some ENMs may not 
produce bounded niche hypervolumes that may be determined by 
spatial scale of the study and so the range of values of environmen-
tal factors. Although the geographical space was relatively limited in 
relation to the geographic ranges of these species, this did not pre-
clude the ability to capture changes in the estimated environmental 
niches among species, years, and ENM algorithms from sampling-
based information at this spatial scale.

5  |  CONCLUSION

Our results demonstrate the effects of ENM algorithm, population, 
sampling, and environmental factors on species niche estimation and 
interpretation. Such factors caused fluctuations in species estimated 
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    |  11 of 14VILAS et al.

niche and affected the pooled niche estimate. We suggest a prelimi-
nary examination of factors affecting the estimated niche dynam-
ics that should be corrected when comparing niche estimates. We 
should rather calculate a pooled niche for a comprehensive estimate 
that can remove the temporal fluctuation on the estimated niche and 
help to provide management and conservation advice. Biased niche 
estimates may impact species response functions and predicted 
geographic space that may lead to erroneous management and con-
servation decisions. Niche interpretation may be relevant for studies 
in which trophic functions may have a critical influence on spatial 
ecosystem model dynamics (Plagányi, 2007; Shin et al., 2010) such 
as Ecospace (Christensen et al., 2008). The study demonstrated that 
our niche analysis approach may contribute to effectively quantify-
ing and assessing niche dynamics. By evaluating the temporal niche 
variability, we showed the effect of environmental perturbations 
on the estimated niche. This may help to understand the resiliency 
of some species to environmental perturbations and rapid environ-
mental changes that can improve the management and conservation 
of species, for example, by providing spaces where impact mitiga-
tion is possible (Scheele et al., 2017). In the future, stressors such as 
red tide events are expected to increase in terms of occurrence and 
magnitude (Anderson et al., 2021). Evaluating changes in temporal 
niche volume of species may help assess the adaptability, genetic 
diversity, and evolutionary responses to perturbation events.
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